23 research outputs found

    Effects of Art Styles on Video Game Narratives

    Get PDF
    The effect of an art style on a video game's narrative is not widely studied and not much is known about how the general player base views the topic. This thesis attempts to answer this question through the use of two different surveys, a general theory related one, and one based upon images and categorization and a visual novel based interview that aims at gaining a further understanding of the subject. The general results point to the art style creating and emphasizing a narrative's mood and greatly enhancing the player experience. Based on these results a simple framework ASGDF was created to help beginning art directors and designers to create the most fitting style for their narrative

    Irreversible diameter change of wood segments correlates with other methods for estimating frost tolerance of living cells in freeze-thaw experiment: a case study with seven urban tree species in Helsinki

    Get PDF
    International audienceAbstractKey messageWe assessed tree frost tolerance using electrolyte leakage and a method based on irreversible diameter change of branches. It was shown that irreversible diameter change correlates with electrolyte leakage and USDA hardiness rating and is a good indicator of frost tolerance.ContextThe number of potential tree species for urban green planning is low in northern latitudes where cold tolerance is a critical factor. High cost of urban tree establishment calls for reliable and preferably non-destructive methods for determining their cold tolerance.AimsWe studied the cellular damage occurring during freezing and thawing in branches of seven broadleaved tree species using electrolyte leakage and a method based on branch diameter changes.MethodsCellular damage in branches was studied during the cold-hardy stage in winter and the dehardening stage in early spring in laboratory conditions using both monitoring of frost-induced diameter changes and the common electrolyte leakage method during temperature decrease to −25 °C.ResultsFrost-induced irreversible diameter shrinkage correlated positively with electrolyte leakage. Out of the seven studied species, Quercus palustris and Crataegus monogyna had the highest frost tolerance during the dehardening stage in early spring, whereas Pterocarya fraxinifolia was the least frost tolerant.ConclusionIrreversible shrinkage of branch diameter due to freezing stress is a good and non-destructive method to indicate frost tolerance. It also correlates well with the USDA plant hardiness rating that is based on the minimum temperature range in which the studied species prevail in the USA

    Genotypes exhibit no variation in precision foraging in mycorrhizal Norway spruce seedlings

    Get PDF
    Aims Fine roots, that comprise the adjustable part of the root system, are important in spatially heterogeneous boreal forest soils. We investigated the soil exploring patterns of Norway spruce (Picea abies) seedlings of equal height belonging to families representing two contrasting growth phenotypes that have shown fast and slow growth rates in long-term experiments. We hypothesised that seedlings of the fast-growing phenotype would show a more explorative root growth strategy, intense branching, and root proliferation in response to the nutrient patch, and that slow-growing phenotypes would be more tolerant to drought stress. Methods Seedlings were grown in flat Perspex microcosms with a clod of humus placed in the mid-bottom part of each microcosm for eight months. The order-based and functional classification, branching topology, and size of seedling root systems were studied with WinRHIZO (TM) image-analysis software and root exploration patterns with LIGNUM-model simulations. In addition, transpiration, stomatal conductance, net assimilation rate responses were measured. Results No differences were found in the early foraging of roots for the humus clod nor net assimilation rate and transpiration between the phenotype groups. Seedlings were favouring exploitation over exploration in the early phases of development regardless of growth phenotype group. However, in fast-growing phenotypes, the main roots were longer, and the lateral root pool favoured long and bifurcated laterals that formed larger absorptive root area. Conclusions Our results indicate that in nutrient-poor conditions, better growth of lateral roots precedes future differences in the aboveground growth rate of Norway spruce.Peer reviewe

    Seipin regulates ER-lipid droplet contacts and cargo delivery

    Get PDF
    Seipin is an endoplasmic reticulum (ER) membrane protein implicated in lipid droplet (LD) biogenesis and mutated in severe congenital lipodystrophy (BSCL2). Here, we show that seipin is stably associated with nascent ER-LD contacts in human cells, typically via one mobile focal point per LD Seipin appears critical for such contacts since ER-LD contacts were completely missing or morphologically aberrant in seipin knockout and BSCL2 patient cells. In parallel, LD mobility was increased and protein delivery from the ER to LDs to promote LD growth was decreased. Moreover, while growing LDs normally acquire lipid and protein constituents from the ER, this process was compromised in seipin-deficient cells. In the absence of seipin, the initial synthesis of neutral lipids from exogenous fatty acid was normal, but fatty acid incorporation into neutral lipids in cells with pre-existing LDs was impaired. Together, our data suggest that seipin helps to connect newly formed LDs to the ER and that by stabilizing ER-LD contacts seipin facilitates the incorporation of protein and lipid cargo into growing LDs in human cells.Peer reviewe

    The Center of Excellence in Atmospheric Science (2002–2019) — from molecular and biological processes to the global climate

    Get PDF
    The study of atmospheric processes related to climate requires a multidisciplinary approach, encompassing physics, chemistry, meteorology, forest science, and environmental science. The Academy of Finland Centre of Excellence in atmospheric sciences (CoE ATM) responded to that need for 18 years and produced extensive research and eloquent results, which are summarized in this review. The work in the CoE ATM enhanced our understanding in biogeochemical cycles, ecosystem processes, dynamics of aerosols, ions and neutral clusters in the lower atmosphere, and cloud formation and their interactions and feedbacks. The CoE ATM combined continuous and comprehensive long-term in-situ observations in various environments, ecosystems and platforms, ground- and satellitebased remote sensing, targeted laboratory and field experiments, and advanced multi-scale modeling. This has enabled improved conceptual understanding and quantifications across relevant spatial and temporal scales. Overall, the CoE ATM served as a platform for the multidisciplinary research community to explore the interactions between the biosphere and atmosphere under a common and adaptive framework
    corecore